The sea cliff at Dwasieden: soft-sediment deformation structures triggered by glacial isostatic adjustment in front of the advancing Scandinavian Ice Sheet
Małgorzata Pisarska-Jamroży
CORRESPONDING AUTHOR
Geological Institute, Adam Mickiewicz University, B. Krygowskiego 12,
61-680 Poznań, Poland
Szymon Belzyt
Geological Institute, Adam Mickiewicz University, B. Krygowskiego 12,
61-680 Poznań, Poland
Andreas Börner
State Authority of Environment, Nature Conservation and Geology
Mecklenburg-Western Pomerania, Goldberger 12, 18273 Güstrow, Germany
Gösta Hoffmann
Steinmann Institute for Geology, Bonn University, Nussallee 8, 53115
Bonn, Germany
Heiko Hüneke
Institute of Geography and Geology, University of Greifswald, F.-L.
Jahn 17a, 17487 Greifswald, Germany
Michael Kenzler
Institute of Geography and Geology, University of Greifswald, F.-L.
Jahn 17a, 17487 Greifswald, Germany
Karsten Obst
State Authority of Environment, Nature Conservation and Geology
Mecklenburg-Western Pomerania, Goldberger 12, 18273 Güstrow, Germany
Henrik Rother
Landesamt für Geologie und Bergwesen, Sachsen Anhalt, Dezernat
Landesaufnahme und Analytik, Köthener 38, 06118 Halle, Germany
Holger Steffen
Geodetic Infrastructure, Lantmäteriet, Lantmäterigatan 2C,
80182 Gävle, Sweden
Rebekka Steffen
Geodetic Infrastructure, Lantmäteriet, Lantmäterigatan 2C,
80182 Gävle, Sweden
Tom van Loon
College of Earth Science and Engineering, Shandong University of
Science and Technology, Qingdao 266590, Shandong, China
Related authors
No articles found.
Christine Thiel, Michael Kenzler, Hans-Jürgen Stephan, Manfred Frechen, Brigitte Urban, and Melanie Sierralta
E&G Quaternary Sci. J., 72, 57–72, https://doi.org/10.5194/egqsj-72-57-2023, https://doi.org/10.5194/egqsj-72-57-2023, 2023
Short summary
Short summary
Geological glacial features such as moraines can be used to construct the environment of former times. While sands may indicate colder phases, soils and peat preserved witness warm phases. Using various dating techniques, the ages of such features can be obtained. This is important in order to get an understanding of the climate of the past, in this study on the extent of the ice marginal position in Schleswig-Holstein.
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022, https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary
Short summary
We present a finite-element model of post-seismic solid Earth deformation built in the software package Abaqus for the purpose of calculating post-seismic deformation in the far field of major earthquakes. The model is benchmarked against an existing open-source post-seismic model demonstrating good agreement. The advantage over existing models is the potential for simple modification to include 3-D Earth structure, non-linear rheologies and alternative or multiple sources of stress change.
Andreas Börner, Anna Gehrmann, Heiko Hüneke, Michael Kenzler, and Sebastian Lorenz
DEUQUA Spec. Pub., 2, 1–10, https://doi.org/10.5194/deuquasp-2-1-2019, https://doi.org/10.5194/deuquasp-2-1-2019, 2019
Anna Gehrmann, Martin Meschede, Heiko Hüneke, and Stig A. Schack Pedersen
DEUQUA Spec. Pub., 2, 19–27, https://doi.org/10.5194/deuquasp-2-19-2019, https://doi.org/10.5194/deuquasp-2-19-2019, 2019
Anna Gehrmann, Heiko Hüneke, Martin Meschede, and Emrys Phillips
DEUQUA Spec. Pub., 2, 29–33, https://doi.org/10.5194/deuquasp-2-29-2019, https://doi.org/10.5194/deuquasp-2-29-2019, 2019
Paul Mehlhorn, Laura Winkler, Franziska-Charlotte Grabbe, Michael Kenzler, Anna Gehrmann, Heiko Hüneke, and Henrik Rother
DEUQUA Spec. Pub., 2, 35–41, https://doi.org/10.5194/deuquasp-2-35-2019, https://doi.org/10.5194/deuquasp-2-35-2019, 2019
Michael Kenzler and Heiko Hüneke
DEUQUA Spec. Pub., 2, 43–50, https://doi.org/10.5194/deuquasp-2-43-2019, https://doi.org/10.5194/deuquasp-2-43-2019, 2019
Johannes Brumme, Heiko Hüneke, and Emrys Phillips
DEUQUA Spec. Pub., 2, 51–60, https://doi.org/10.5194/deuquasp-2-51-2019, https://doi.org/10.5194/deuquasp-2-51-2019, 2019
Sebastian Lorenz, Henrik Rother, Michael Kenzler, and Sara Kaphengst
DEUQUA Spec. Pub., 2, 83–88, https://doi.org/10.5194/deuquasp-2-83-2019, https://doi.org/10.5194/deuquasp-2-83-2019, 2019
H. Wang, L. Xiang, H. Steffen, P. Wu, L. Jiang, Q. Shen, D. Piretzidis, M. G. Sideris, M. Hayashi, and L. Jia
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1793–1796, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1793-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1793-2019, 2019
Rebekka Steffen, Holger Steffen, and Patrick Wu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-43, https://doi.org/10.5194/gmd-2016-43, 2016
Revised manuscript not accepted
Short summary
Short summary
We evaluate two model approaches intended to model glacially induced fault movements. We focus entirely on the glacial isostatic adjustment behaviour of those approaches and compare them with respect to displacement and stress changes. The results show that only one approach is able to model the glacial isostatic adjustment process correctly.
H. Steffen and P. Wu
Solid Earth, 5, 557–567, https://doi.org/10.5194/se-5-557-2014, https://doi.org/10.5194/se-5-557-2014, 2014
H. Steffen, P. Wu, and H. Wang
Solid Earth, 5, 511–521, https://doi.org/10.5194/se-5-511-2014, https://doi.org/10.5194/se-5-511-2014, 2014
H. Steffen, G. Kaufmann, and R. Lampe
Solid Earth, 5, 447–459, https://doi.org/10.5194/se-5-447-2014, https://doi.org/10.5194/se-5-447-2014, 2014
H. Steffen, W. Brunk, M. Leven, and U. Wedeken
Hist. Geo Space. Sci., 5, 1–10, https://doi.org/10.5194/hgss-5-1-2014, https://doi.org/10.5194/hgss-5-1-2014, 2014
Cited articles
Berthelsen, A.: From Precambrian to Variscan Europe, in: A Continent
Revealed: The European Geotraverse, edited by: Blundell, D., Freeman, R.,
and Mueller, S., Cambridge University Press, Cambridge, 153–164, 1992.
Brandes, C., Polom, U., and Winsemann, J.: Reactivation of basement faults:
interplay of ice-sheet advance, glacial lake formation and sediment loading,
Basin Res., 23, 53–64, 2011.
Brandes, C., Winsemann, J., Roskosch, J., Meinsen, J., Tanner, D. C.,
Frechen, M., Steffen, H., and Wu, P.: Activity along the Osning Thrust in
central Europe during the Lateglacial: Ice-sheet and lithosphere
interactions, Quaternary Sci. Rev., 38, 49–62, 2012.
Brandes, C., Steffen, H., Sandersen, P. B. E., Wu, P., and Winsemann, J.:
Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist
Zone, northern Denmark: implications for neotectonics and Lateglacial
fault-bound basin formation, Quaternary Sci. Rev., 189, 149–168, 2018.
Brumme, J., Hüneke, H., and Phillips, E.: Micromorphology and clast microfabrics of subglacial traction tills at the sea-cliff Dwasieden: evidence of polyphase syn- and post-depositional deformation, DEUQUA Spec.
Pub., this volume, 2019.
Hampel, A. and Hetzel, R.: Response of normal faults to glacial-interglacial
fluctuations of ice and water masses on Earth's surface, J.
Geophys. Research, 111, B06406, 2006.
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J.,
Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M. L.,
and Zoback, M.: The World Stress Map database release 2016: Crustal stress
pattern across scales, Tectonophysics, 744, 484–498, 2018.
Heine, K., Reuther, A. U., Thieke, H. U., Schulz, R., Schlaak, N., and Kubik,
P. W.: Timing of Weichselian ice marginal positions in Brandenburg
(northeastern Germany) using cosmogenic in situ Be-10, Z.
Geomorphol. N.F., 53, 433–454, 2009.
Hoffmann, G. and Reicherter, K.: Soft-sediment deformation of Late
Pleistocene sediments along the southwestern coast of the Baltic Sea (NE
Germany), Int. J. Earth Sci., 101, 351–363, 2012.
Houmark-Nielsen, M.: Extent, age and dynamics of Marine Isotope Stage 3
glaciation in the southwestern Baltic Basin, Boreas, 39, 343–359, 2010.
Hughes, A., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., and Svendsen,
J. I.: The last Eurasion ice sheets – a chronological database and
time-slice reconstruction, DATED-1, Boreas, 45, 1–45, 2016.
Johnston, A. C.: A Wave in the Earth, Science, 274, 735, 1996.
Kaufmann, G., Wu, P., and Ivins, E. R.: Lateral viscosity variations beneath
Antarctica and their implications on regional rebound motions and
seismotectonics, J. Geodynam., 39, 165–181, 2005.
Kenzler, M., Tsukamoto, S., Meng, S., Thiel, C., Frechen, M., and
Hüneke, H.: Luminescence dating of Weichselian interstadial sediments
from the German Baltic Sea coast, Quat. Geochronol., 30, 215–256,
2015.
Kenzler, M., Tsukamoto, S., Meng, S., Frechen, M., and Hüneke, H.: New
age constraints from the SW Baltic Sea area – implications for Scandinavian
Ice Sheet dynamics and palaeo-environmental conditions during MIS 3 and
early MIS 2, Boreas, 46, 34–52, 2017.
Krauss, M. and Mayer, P.: Das Vorpommern-Störungssystem und seine
regionale Einordnung zur Transeuropäischen Störung, Z.
Geol. Wissenschaft.,
32, 227–246, 2004.
Lambeck, K., Purcell, A., Zhao, J., and Svensson, N.-O.: The Scandinavian
ice sheet: from MIS 4 to the end of the last glacial maximum, Boreas, 39,
410–435, 2010.
Mörner, N. A.: Glacioisostatic and long term crustal movements in
Fennoscandia with respect to lithospheric and atmospheric processes and
properties, Tectonophysics, 176, 13–24, 1990.
Muir-Wood, R.: Deglaciation seismotectonics: a principal influence on
intraplate seismogenesis at high latitudes, Quaternary Sci. Rev., 19,
1399–1411, 2000.
Panzig, W.-A.: The tills of NE Rügen – lithostratigraphy, gravel
composition and relative deposition directions in the southwestern Baltic
region, in: Glacial Deposits in North-East Europe, edited by: Ehlers, J.,
Kozarski, S., and Gibbard, P., Balkema, Rotterdam, 521–533, 1995.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains
ice-age terminal deglaciation: The global ICE-6G_C (VM5a)
model, J. Geophys. Res.-Sol. Ea., 120, 450–487, 2015.
Pisarska-Jamroży, M., Belzyt, S., Börner, A., Hoffmann, G.,
Hüneke, H., Kenzler, M., Obst, K., Rother, H., and van Loon, A.J.:
Evidence from seismites for glacio-isostatically induced crustal faulting in
front of an advancing land-ice mass (Rügen Island, SW Baltic Sea),
Tectonophysics, 745, 338–348, 2018a.
Pisarska-Jamroży, M., Van Loon, A. J., and Bronikowska, M.: Dumpstones as
records of overturning ice rafts in a Weichselian proglacial lake (Rügen
Island, NE Germany), Geol. Q., 62, 917–924, 2018b.
Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusienė, A., and
Woronko, B.: Seismic shocks, periglacial conditions and glaciotectonics as
causes of the deformation of a Pleistocene meandering river succession in
central Lithuania, Baltica, 32, 63–77, 2019.
Seidel, E., Meschede, M., and Obst, K.: The Wiek Fault Zone east of
Rügen Island: Origin, tectonic phases and its relation to the
TransEuropean Suture Zone, Geol. Soc. London Spec. Pub., 469,
https://doi.org/10.1144/SP469.10, 2018.
Thybo, H.: Crustal structure and tectonic evolution of the Tornquist Fan
region as revealed by geophysical methods, Bull. Geol. Soc. Denmark, 46,
145–160, 2000.
Van Loon, A. J.: Soft-sediment deformation structures in siliciclastic
sediments: an overview, Geologos, 15, 3–55, 2009.
Van Loon, A. J. and Pisarska-Jamroży, M.: Sedimentological evidence of
Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound,
Sediment. Geol., 300, 1–10, 2014.
Van Loon, A. J., Pisarska-Jamroży, M., Nartišs, M., Krievāns, M.,
and Soms, J.: Seismites resulting from high-frequency, high-magnitude
earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift,
Journal of Palaeogeography, 5, 363–380, 2016.